Two bioluminescent diptera: the North American Orfelia fultoni and the Australian Arachnocampa flava. Similar niche, different bioluminescence systems.
نویسندگان
چکیده
Orfelia fultoni is the only bioluminescent dipteran (Mycetophilidae) found in North America. Its larvae live on stream banks in the Appalachian Mountains. Like their Australasian relative Arachnocampa spp., they build sticky webs to which their bioluminescence attracts flying prey. They bear two translucent lanterns at the extremities of the body, histologically distinct from the single caudal lantern of Arachnocampa spp., and emit the bluest bioluminescence recorded for luminescent insects (lambda(max) = 460 nm versus 484 nm from Arachnocampa). A preliminary characterization of these two bioluminescent systems indicates that they are markedly different. In Orfelia a luciferin-luciferase reaction was demonstrated by mixing a hot extract prepared with dithiothreitol (DTT) under argon with a crude cold extract. Bioluminescence is not activated by adenosine triphosphate (ATP) but is strongly stimulated by DTT and ascorbic acid. Using gel filtration, we isolated a luciferase fraction of approximately 140 kDa and an additional high molecular weight fraction (possibly a luciferin-binding protein) that activated bioluminescence in the presence of luciferase and DTT. The Arachnocampa luciferin-luciferase system involves a 36 kDa luciferase and a luciferin soluble in ethyl acetate under acidic conditions; the bioluminescence is activated by ATP but not by DTT. The present findings indicate that the bioluminescence of O. fultoni constitutes a novel bioluminescent system unrelated to that of Arachnocampa.
منابع مشابه
Roles of biogenic amines in regulating bioluminescence in the Australian glowworm Arachnocampa flava.
The glowworm Arachnocampa flava is a carnivorous fly larva (Diptera) that uses light to attract prey into its web. The light organ is derived from cells of the Malpighian tubules, representing a bioluminescence system that is unique to the genus. Bioluminescence is modulated through the night although light levels change quite slowly compared with the flashing of the better-known fireflies (Col...
متن کاملCircadian regulation of bioluminescence in the prey-luring glowworm, Arachnocampa flava.
The glowworms of New Zealand and Australia are bioluminescent fly larvae that generate light to attract prey into their webs. Some species inhabit the constant darkness of caves as well as the dim, natural photophase of rain-forests. Given the diversity of light regimens experienced by glowworms in their natural environment, true circadian rhythmicity of light output could be present. Consequen...
متن کاملDistribution and phylogenetic relationships of Australian glow-worms Arachnocampa (Diptera, Keroplatidae).
Glow-worms are bioluminescent fly larvae (Order Diptera, genus Arachnocampa) found only in Australia and New Zealand. Their core habitat is rainforest gullies and wet caves. Eight species are present in Australia; five of them have been recently described. The geographic distribution of species in Australia encompasses the montane regions of the eastern Australian coastline from the Wet Tropics...
متن کاملDetection of bioluminescence from individual bacterial cells: a comparison of two different low-light imaging systems.
Detection of very low light levels arising from individual cells of the naturally bioluminescent bacterium Vibrio fischeri as well as from a luminescence-marked Pseudomonas putida strain was achieved by the aid of two different camera systems. Using a liquid nitrogen-cooled slow-scan CCD (charge-coupled device) camera were able to detect single-cell bioluminescence within 1 min, and the picture...
متن کاملCorrection: A Causal Relation between Bioluminescence and Oxygen to Quantify the Cell Niche
Bioluminescence imaging assays have become a widely integrated technique to quantify effectiveness of cell-based therapies by monitoring fate and survival of transplanted cells. To date these assays are still largely qualitative and often erroneous due to the complexity and dynamics of local micro-environments (niches) in which the cells reside. Here, we report, using a combined experimental an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Photochemistry and photobiology
دوره 75 1 شماره
صفحات -
تاریخ انتشار 2002